Using satellite imagery to determine crop residue cover for improving erosion estimates on agricultural lands

Theresa M. Possley Nelson, PE
Wisconsin Department of Natural Resources

AWRA Wisconsin
March 5, 2015
Acknowledgements

- Aaron Ruesch
- Dave Evans
- Brian Gelder
- Laura Ward Good
- Matt Zoschke
- Dane Co.
Overview

- EVAAL
- IDEP
- NDTI
- Clark County Data Analysis
- Pleasant Valley EVAAL Analysis
Erosion Vulnerability Assessment for Agricultural Lands

- GIS–based model
- Vulnerability to erosion and nutrient export
- Deprioritizes internally draining areas
Available Datasets

LiDAR

Crop Data

Soils
Erosion Vulnerability Analysis

USLE + SPI - IDA

= EVAAL

Erosion Vulnerability Assessment for Agricultural Lands
Results

USLE

Erosion Vulnerability

NC Areas

Low
Medium
High
EVAAL Website

- Documents
- Tutorial Data
- ArcToolbox

http://dnr.wi.gov/topic/nonpoint/evaal.html
Limitations

- We can’t model what we don’t know
 - Tillage
 - Manure application
 - BMPs
- Erosion must be driving factor
- Does not account for delivery factors or tile drainage
- Cannot “target”, rather “prioritize”
$A = RK(\frac{LS}{P})$

Cropland data layer

Crop Rotations

SNAP-Plus (RUSLE2) → Rotational C Factor

- Poor
- Good
USLE w/ Low C Factor

USLE w/ High C Factor
Iowa Daily Erosion Project

- Daily estimates of rainfall, runoff, and soil erosion for the state of Iowa
- Collaboration:
 - Iowa State University, National Soil Erosion Research Lab, National Laboratory for Agriculture and the Environment, and The University of Iowa
- Updating to use remotely sensed information:
 - Crop rotations
 - Tillage
 - Topography
IDEP Example

Brian Gelder, Iowa State
Satellite Imagery Analysis

- Landsat 7 ETM+
- Normalized Difference Tillage Index
- $\text{NDTI} = \frac{\text{band5} - \text{band7}}{\text{band5} + \text{band7}}$

“Remote Sensing Of Crop Residue Cover Using Multi–temporal Landsat Imagery”
B. Zheng – 2012
NDTI is positively correlated with crop residue cover and green vegetation.

Brian Gelder, Iowa State
- Tillage timing can vary greatly
- Field will have lowest NDTI value right after tillage/planting and before plant emergence
Clark County Transect Data

- Annual data collection
- Includes
 - Crop type
 - Tillage type
 - Percent residue
Landsat 7 ETM+ (surface reflectance)
Scenes from 2011
 ◦ March–August

minNDTI
 ◦ May 16
 ◦ June 1
 ◦ June 17
 ◦ July 3

Averaged for each transect field
Clark County minNDTI

Percent Residue Coverage

min NDTI

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0-15% 16-30% 31-50% 51-75% 75-100%
minNDTI

High: 0.3
Low: 0
Clark County minNDTI

\[y = 0.0795x + 0.0713 \]

\[R^2 = 0.9118 \]
Relate to Tillage Types

NDTI

Moldboard (0%–15%)
(15%–75%)
No Till (75%–100%)

0.024337 - 0.083000
0.083001 - 0.131000
0.131001 - 0.300000
Dane Co. transect data
 ◦ Just tillage type – no % residue cover
Analysis for Spring 2010
Pleasant Valley Tillage

Tillage Type
- **Red**: Moldboard
- **Yellow**: No-Till/Non-Ag
- **Green**: No-Till/Non-Ag
Challenges

- **Landsat**
 - Data gaps
 - Clouds
 - Timing/availability

- Validation data

- Computing time/power
Next Steps

- Evaluate automating process
- Determine tillage for multiple years
- Incorporate into EVAAL
- Potentially coordinate with Iowa State
Conclusions

- EVAAL assess erosion vulnerability; can be used to prioritize watershed efforts
- NDTI is positively correlated to crop residue coverage; can be used to infer tillage
- EVAAL results can be improved using satellite derived tillage information
Questions

Theresa M. Possley Nelson, PE
(608) 266-7037
Theresa.Nelson@wisconsin.gov
dnrwaterqualitymodeling@wisconsin.gov