Evaluating aquifer flow conditions using heat as an in-well tracer

Steve Sellwood, UW – Madison Department of Geoscience
Jean Bahr, UW – Madison Department of Geoscience
Dave Hart, Wisconsin Geological and Natural History Survey
Evaluating aquifer flow conditions using heat as an in-well tracer

Steve Sellwood, UW – Madison Department of Geoscience
Jean Bahr, UW – Madison Department of Geoscience
Dave Hart, Wisconsin Geological and Natural History Survey

Funding provided by:
• University of Wisconsin Water Resources Institute
Evaluating aquifer flow conditions using heat as an in-well tracer

Steve Sellwood, UW – Madison Department of Geoscience
Jean Bahr, UW – Madison Department of Geoscience
Dave Hart, Wisconsin Geological and Natural History Survey

Funding provided by:
• University of Wisconsin Water Resources Institute
• Geological Society of America Student Research Grant
What can borehole flow tell us?
What can borehole flow tell us?

- Identify permeable features
- Identify aquitards
- Determine flow direction (up or down)
- Understand implications for contaminant transport
Research goals:

• Use heat as an in-well tracer to measure borehole flow

• Use borehole flow data to characterize aquifer flow conditions
In-well heat tracer tests:

- Induce heat pulses at discrete depths using downhole heater
In-well heat tracer tests:

• Induce heat pulses at discrete depths using downhole heater

• Monitor temperatures in the well with fiber optic Distributed Temperature Sensing system (DTS)
In-well heat tracer tests:

- Induce heat pulses at discrete depths using downhole heater
- Monitor temperatures in the well with fiber optic Distributed Temperature Sensing system (DTS)
- Use heat movement to determine flow direction, calculate flow velocities
Optical Borehole Images of the Pheasant Branch borehole

- Depth (m)
- Mt. Simon sandstone
- Eau Claire shale
- Mt. Simon sandstone
- Wonewoc sandstone
Plot of temperature versus time at depth of 99 m
Summary and Conclusions
Summary and Conclusions

- 122 borehole flow velocity measurements in 8 wells
Summary and Conclusions

- 122 borehole flow velocity measurements in 8 wells
- Velocities ranged from approximately 0.01 m/min (0.05 gpm) to 30 m/min (36 gpm) and 0 m/min
Summary and Conclusions

- 122 borehole flow velocity measurements in 8 wells
- Velocities ranged from approximately 0.01 m/min (0.05 gpm) to 30 m/min (36 gpm) and 0 m/min
- Readily identify flow direction, discrete flow zones, and porous media flow
Summary and Conclusions

- 122 borehole flow velocity measurements in 8 wells
- Velocities ranged from approximately 0.01 m/min (0.05 gpm) to 30 m/min (36 gpm) and 0 m/min
- Readily identify flow direction, discrete flow zones, and porous media flow
- Results for no vertical flow may be informative with respect to aquifer flow velocity and/or thermal conductivity
Summary and Conclusions

- 122 borehole flow velocity measurements in 8 wells
- Velocities ranged from approximately 0.01 m/min (0.05 gpm) to 30 m/min (36 gpm) and 0 m/min
- Readily identify flow direction, discrete flow zones, and porous media flow
- Results for no vertical flow may be informative with respect to aquifer flow velocity and/or thermal conductivity
- Heat tracers are an effective tool for borehole flow characterization
Experiment Design

- A temperature is recorded for every meter of cable
- Temperatures are re-measured every 40 seconds