Flood Risk and Warning for the Yahara River Chain of Lakes (RCL)

John Reimer, Chin Wu
University of Wisconsin, Madison

AWRA Wisconsin, 42nd Meeting
March 8, 2018
Motivations

Lake Flooding

Loss

Urban Flooding

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Crop Loss ($ Million)</th>
<th>Property Damage ($ Million)</th>
<th>Total Loss ($ Million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>June, 1993</td>
<td>Flood</td>
<td>$12.6</td>
<td>$10.0</td>
<td>$22.6</td>
</tr>
<tr>
<td>May, 1996</td>
<td>Severe Storms</td>
<td>$1.1</td>
<td>$0.15</td>
<td>$3.5</td>
</tr>
<tr>
<td>June, 2000</td>
<td>Flood</td>
<td>$6.1</td>
<td>$3.2</td>
<td>$9.3</td>
</tr>
<tr>
<td>Summer, 2002</td>
<td>Drought</td>
<td>$0</td>
<td>$4.4</td>
<td>$4.4</td>
</tr>
<tr>
<td>June, 2004</td>
<td>Tornado</td>
<td>$1.5</td>
<td>$0</td>
<td>$1.5</td>
</tr>
<tr>
<td>August, 2005</td>
<td>Tornado</td>
<td>$34.3</td>
<td>$7.5</td>
<td>$41.8</td>
</tr>
<tr>
<td>May, 2006</td>
<td>Flooding</td>
<td>$5.8</td>
<td>$0</td>
<td>$5.8</td>
</tr>
<tr>
<td>July, 2006</td>
<td>Flooding</td>
<td>$10.0</td>
<td>$0</td>
<td>$10.0</td>
</tr>
<tr>
<td>August, 2007</td>
<td>Flooding</td>
<td>$6.0</td>
<td>$5.0</td>
<td>$11.0</td>
</tr>
<tr>
<td>June, 2008</td>
<td>Severe Storms and Flooding</td>
<td>$133.5</td>
<td>$64.4</td>
<td>$197.9</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$92.6</td>
<td>$87.9</td>
<td>$180.5</td>
</tr>
</tbody>
</table>
Objectives

• Characterize Flood Risk

Hazard (Rainfall) × Vulnerability (building) × Damage Curve

Risk

Probability × Loss = Probability of Loss

• Develop Flood Forecast and Warning
COMMER Procedure

COmpiling Data

Dam Operation

Rainfall Hazard

Land

Building Assets

2008 Storm

DEM

WISCONSIN

0 125 25

5 Miles

2008 Storm

Monona

Waubesa

Kegonsa
COMMER Procedure

Compiling Data
- Dam Operation
- Rainfall Hazard
- Land
- Building Assets

Modeling
- SWAT
- Hydrologic
 - Hydrodynamic (Lake-River)
- LIDAR DEM Land Use
- Reimer and Wu, 2016

Mapping
- Flood Inundation
- Damage
- Land Use Building Type

Reimer and Wu, 2016
COMMER Procedure

Compiling Data
- Dam Operation
- Rainfall Hazard
- Land
- Building Assets

 Modeling
- SWAT
- Hydrologic
- Hydrodynamic (Lake-River)
- Land Use
- Building Type
- Flood Inundation

 Mapping
- LIDAR DEM
- People Evacuation

 Estimating Loss
- Loss ($)
- Building Loss
- People

 Risk
- Building Type
- Flood Depth
- LIDAR DEM

Reimer and Wu, 2016

Risk
- R: Asset Type
- A: Asset Value
- V: VULN
- E: ECON
- B: Building Type

Risk Table

<table>
<thead>
<tr>
<th>RP</th>
<th>Asset Type</th>
<th>VULN</th>
<th>ECON</th>
<th>Building Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>368</td>
<td>32</td>
<td>1.93</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>460</td>
<td>69</td>
<td>3.44</td>
<td>3</td>
</tr>
<tr>
<td>25</td>
<td>699</td>
<td>104</td>
<td>10.00</td>
<td>3</td>
</tr>
<tr>
<td>50</td>
<td>856</td>
<td>375</td>
<td>19.01</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>1538</td>
<td>1096</td>
<td>51.07</td>
<td>3</td>
</tr>
</tbody>
</table>
Total Precipitation (inches)
June 1-15, 2008

Daily Rainfall (in)
Yahara Lakes

$193k
$578k
$19k
$276k

$1.07 Million

Reimer and Wu, 2016
Storm Transposition

Deterministic

Lake Delton

Yahara Lakes

Stochastic

Hayden et al., 2016

Wright et al., 2017

2.51 Million

Reimer and Wu, 2016

$???$ Million
Rainfall Probability

Rainfall Duration (days)	Return Period (years)
2 | 1
4 | 10
6 | 25
8 | 50
10 | 100

10 Year	25 Year	50 Year	100 Year	250 Year	500 Year

2 Day	4 Day	6 Day	8 Day	10 Day
Results:

Loss of Building Infrastructure

- **Mendota**
- **Monona**
- **Waubesa**
- **Kegonsa**

Return Period

$ USD Millions

- 2 Day
- 4 Day
- 6 Day
- 8 Day
- 10 Day

8 Day, 500 RP

6 Day, 500 RP

8 Day, 500 RP

8 Day, 500 RP
Results:

Risk of Building Infrastructure

- 10 Day, 250 RP
- 10 Day, 10 RP
- 8 Day, 250 RP

Building Risk (USD Thousands)

<table>
<thead>
<tr>
<th>Return Period</th>
<th>2 Day</th>
<th>4 Day</th>
<th>6 Day</th>
<th>8 Day</th>
<th>10 Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- A = 602 km²
- Monona
- Waubesa
- Kegonsa

Urbanized

Choked Flow

Historical Constriction

Water Elevation (ft NIOSH)

Mixed
Results:

Evacuation of People

Number (Thousands of People)

Return Period

8 Day, 500 RP

6 Day, 500 RP

8 Day, 500 RP

8 Day, 500 RP

Mendota
Monona
Waubesa
Kegonsa
Results:

Risk of Evacuation

Evacuation Risk (Number of People)

Return Period

Mendota
Monona
Waubesa
Kegonsa
RECALL: Objectives

- Characterize **Flood Risk**

Vulnerability Mitigation
Are we prepared today for tomorrow’s *flood*?
Flood Forecasts

Past Rainfall

June 16-23, 2014

Forecast Rainfall

Integrated Models

Watershed

Lake-River

www.infosyahara.org

NATIONAL WEATHER SERVICE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
Flood Warning

Lake Mendota
Lake Monona
Lake Waubesa
Lake Kegonsa
RECALL: Objectives

- Characterize **Flood Risk**
 - Probability of Loss
 - Hazard (Rainfall)
 - Physical Damage
 - Hazard Intensity
 - Type 1
 - Type 2
- Vulnerability
 - Mitigation
- Develop **Flood Forecast and Warning**
- Resilience & Preparedness
Summary

- **Characterize Flood Risk**
- **Vulnerability Mitigation**

<table>
<thead>
<tr>
<th></th>
<th>LOSS</th>
<th>RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Building</td>
<td>Evacuation</td>
</tr>
<tr>
<td>Mendota</td>
<td>500 Year</td>
<td>500</td>
</tr>
<tr>
<td>Monona</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Waubesa</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Kegonsa</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

COMMER Procedure

- Develop Flood Forecast and Warning
- Resilience & Preparedness