Green Street Stormwater Management Plan

Green Infrastructure History in Milwaukee

Emerging National trend over the last 10 years

What is a Green Street?

- Manages stormwater in the street right-of-way
- Fresh look at typical design protocols
- Utilize green space where available
- Incorporate innovative pavement types
- Green Streets provide benefits without sacrificing roadway function

Green Street Features

Vegetated Areas

- Median
- Terrace
- Adjacent Open Spaces

Pavement

- Street
- Parking Lane (recommended)
- Alleys (recommended)

Trees

• Trees with drainage components

Why Green Streets?

- Streets represent 20-25% of the total urban area
- Measurable water quality and drainage benefits
- DNR Permit compliance
- Opportunities for collaboration and partnerships
- Aligns with City's Green Team and Flooding Task Force recommendations
- Can be incorporated into the standard street design processes

0

Why a Green Street Standard?

- Framework to Provide Consistent Guidance Across DPW
- Improve Drainage
 - 2010 Flooding Task Force
 - Provides decentralized storage and infiltration
 - Opportunity in highly urbanized area
- Reduce the Cost of Implementation
 - Retrofits are costly
 - Integrating into the planning and design process provides cost savings
 - Realizes 20 to 40 percent cost savings
 - Multiple benefits with comparable cost to traditional controls
- Achieve Multiple Benefits
 - Help City adapt to climate change
 - Improved air and water quality
 - Reduced heat island effect
 - Improved neighborhood aesthetics
 - Improved drainage

0

Green Street Evaluation Built Into the Standard Design Process

Potential / Prospective	ater evaluation O Final design
Median Bioret Avg. width (ft.) Cost \$ 0.00 Avg. length (ft.) lbs/yr Area 0.00 TSS reduct 0.0000 Treatable 0 Phosp. reduct 0.0000	Yes? Is this a reconstruction? ✓ Is distance from face of curb to property line > 12 feet? ✓ Is there a median? ✓ Is median greater than 5 feet?
Terrace Bioret Avg. width (ft.)	✓ Does project have sidewalk? ☐ Is sidewalk full walk? ☑ Is face of curb to sidewalk width greater than 6 feet?
Open Space Bioret	✓ Is there open space adjacent to the project? ✓ Is open space wider than 5 feet? Strategy recommendations: Median Bioretention Terrace Bioretention Open Space Bioretention
Porous Pavement Cost \$	Select reason(s) for changes to strategy recommenda Utility conflict Cost constraints Slope Topography constraints Resident preference
Avg. width (ft.) Cost \$ 0.00 Avg. length (ft.) lbs/yr Area 0.00 TSS reduct 0.0000 Treatable 0 Phosp. reduct 0.0000	Traffic patterns or traffic loadings Adjacent open space property owner not supportive Notes

- Add screening criteria into city's street database
- Positive Criteria include wide medians, wide terraces, availability of adjacent land, etc
- Negative criteria include utility conflicts, steep slopes, etc

Top Green Street Opportunities: Bioretention in Median

(2012) Green Street Median
W. Grange Ave. (Howell to Freeway)
Milwaukee, WI

(2010) Green Street MedianGrange Ave.
Milwaukee, WI

Top Green Street Opportunities: Tree Trenches

Urban street with tree trench and bioretention, Syracuse, NY

Conceptual tree trench components

Option Limited by Terrace Width: Bioretention in Terrace Grass or Natural Landscaping

Typical cross section of a bioretention facility with an underdrain, overflow, and tree and grass plantings

Typical cross section of a bioretention facility with an underdrain, overflow, and native plantings

Green Street Opportunity: Example: Bioretention & Tree Trench in

Cost Effective Maintenance Strategy

- First two years of maintenance included in construction contract
- Switch maintenance from mowing to landscape maintenance
- Periodic observation to verify performance as expected
- Vacuum sweeping for porous pavement requires new equipment, but sweeping frequency is no greater than what already occurs

Green Street Policy Summary

- Utilize right-of-way for multiple benefits
- Incorporate into standard street planning and design process
- Cost effective
- Adaptation for climate change
- Improves water quality
- Improves drainage

Backup Slides

Example: Bioretention with Trees

Urban street before, Syracuse, NY

Urban street after curb extension, bioretention with tree planting, and overflow, Syracuse, NY

Example: Porous Pavement

Before After

Example: Porous Pavement Alleys

Before (July 2011)

Conventional reconstruction (8-inch reinforced concrete):

After (February 2012)

Green alley retrofit (permeable pavers with infiltration trench)