### Water Quality Assessment of Waubesa Wetlands Watershed, Dane County, WI



2018 Water Resources Management Cohort Mitch Buthod and Rachel Johnson









#### Technical Advisory Committee (TAC)























**Ecosystem Services Assessment** 





## Water quality parameters

#### **Field parameters**

- Weather conditions
- Air temperature
- Water temperature
- Dissolved oxygen
- Conductivity
- Discharge



#### Lab parameters, given as concentrations

- Total phosphorus (TP)
- Orthophosphate
- Nitrate and Nitrite (NO2 +NO3)
- Total Kjeldahl Nitrogen (TKN)
- Total Suspended Solids (TSS)
- Chloride



## Water quality parameters

#### **Field parameters**

- Weather conditions
- Air temperature
- Water temperature
- Dissolved oxygen
- Conductivity
- Discharge



#### Lab parameters, given as concentrations

- Total phosphorus (TP)
- Orthophosphate
- Nitrate and Nitrite (NO2 +NO3)
- Total Kjeldahl Nitrogen (TKN)
- Total Suspended Solids (TSS)
- Chloride



# Sample collection



#### **Precipitation and discharge**



1. Discharge





- 1. Discharge
- 2. Location: upstream vs. downstream





- 1. Discharge
- 2. Location: upstream vs. downstream
- 3. Time: 2015 2018





# Sampling sites



# Sampling sites



### TP and TSS increase with increased discharge



#### NOx and chloride *decrease* with increased discharge



- 1. Discharge
- 2. Location: upstream vs. downstream





# Sampling sites



# Sampling sites



#### Nutrient concentrations change upstream to downstream



#### Nutrient concentrations change upstream to downstream



- 1. Discharge
- 2. Location: upstream vs. downstream
- 3. Time: 2015 2018





#### TSS concentrations 2015 - 2018



#### TSS concentrations 2015 - 2018



### TP, TSS, and NOx decreased from 2015 - 2018

| SWAN          | P-VALUE | TREND |
|---------------|---------|-------|
| TP            | < 0.05  | Ы     |
| Ortho-P       | NS      |       |
| TSS           | < 0.05  | И     |
| $NO_2 + NO_3$ | < 0.05  | Ы     |
| TKN           | NS      |       |

| MURPHY        | P-VALUE | TREND |
|---------------|---------|-------|
| ТР            | NS      |       |
| Ortho-P       | NS      |       |
| TSS           | NS      |       |
| $NO_2 + NO_3$ | < 0.05  | Ы     |
| TKN           | NS      |       |



# Modeling



## Increasing urbanization



## Surface water models

#### HydroCAD

- Water *quantity*
- Predicts stream peak flow and volume
- Based on synthetic storms

#### STEPL

- Water *quality*
- Estimates pollutant loads
- Based on land use and BMPs



## Water *quantity* modeling

#### **Four Scenarios:**

| Climate Change           | Watershed<br>Development    |
|--------------------------|-----------------------------|
| Climate Change           | Climate Change              |
| Watershed<br>Development | Watershed<br>Development    |
|                          | No Stormwater<br>Management |



## Water *quantity* modeling

#### **Four Scenarios:**

| Climate Change | Watershed<br>Development    |
|----------------|-----------------------------|
| Climate Change | Climate Change              |
| Watershed      | Watershed                   |
| Development    | Development                 |
|                | No Stormwater<br>Management |



# Water quantity modeling

#### The Terravessa Neighborhood

• Control peak flow rates to predevelopment conditions

 Maintain 90% "stay-on" volume of predevelopment conditions

• Retain 80% of sediment



### Peak discharge increases



## Water *quality* modeling

#### Waubesa Wetlands Watershed Future Scenarios Creek Watershed Waubesa Wetlands Fitchburg Development Creek Year of Development Completion

#### Four Scenarios:

| Baseline                 | Expiration                 |
|--------------------------|----------------------------|
| Continuation of existing | Expanded<br>implementation |

#### Phosphorus loads decrease



Management Recommendations

#### 1. Build a long-term surface water dataset.

- Monitor through development
- Develop a **rating curve** for Swan Creek
- Increase support for citizen science

Management Recommendations

#### **1. Build a long-term surface water dataset.**

- Monitor through development
- Develop a **rating curve** for Swan Creek
- Increase support for citizen science

#### 2. Design, build, and educate for a changing climate.

- Use the most restrictive **development standards** available
- Modify **design storms** to account for climate change
- Enhance **public education** about water quality and wetlands with new watershed residents

Management Recommendations

#### **1. Build a long-term surface water dataset.**

- Monitor through development
- Develop a **rating curve** for Swan Creek
- Increase support for citizen science

#### **2.** Design, build, and educate for a changing climate.

- Use the most restrictive **development standards** available
- Modify **design storms** to account for climate change
- Enhance **public education** about water quality and wetlands with new watershed residents

#### 3. Coordinate future land management at a watershed scale.

- Consider cumulative effects of land use change
- **Restore** target upstream areas
- Harmonize upstream and downstream actions



**Ecosystem Services Assessment** 





## Special Acknowledgements



Sarah Fuller<sup>1,2</sup>



Anita Thompson<sup>1</sup>



Sharon Long<sup>1</sup>

UW-Madison
CARPC

### Acknowledgements

#### **Technical Advisory Committee**

Joy Zedler (UW-Madison) Calvin DeWitt (UW-Madison) Tom Bernthal (DNR) Mike Rupiper (CARPC)

David Bart (UW-Madison) Tim Asplund (DNR) Mike Sorge (DNR) Shelley Warwick (DNR) Lisa Helmuth (DNR) Greg Searle (DNR) Jeff Helmuth (DNR) Nancy Sheehan (RRC) Erica Schmitz (Dunn) Ben Kollenbroich (Dunn) Sarah Gatzke (TNC) Bill Balke (Fitchburg) Tom Hovel (Fitchburg) Todd Stuntebeck (USGS) Daniel Feinstsein (USGS) Dave Hart (WGNHS) Mike Parsen (WGNHS) Jeremy Balousek (Dane County) Rob Montgomery (MA) Tracy Hames (WWA)

Marie Dematitis (UW-Madison) Zack Zopp (UW-Madison) Alex Wenthe (Quercus)

Ronald French (RRC) Nancy Sheehan (RRC) Hannah Larson (TNC) Conor Bellew UW-Madison Center for Limnology Kyle Minks (Dane County) Dane County Natural Resources Education Center Joanne Kleine Jim Welsh (Groundswell Conservation) Susan Sanford (Dane County) Brad Krause (Waubesa Neighborhood Beach Association) Clare Carlson (Friends of Capital Springs) Carolyn Clow (McFarland) David Lorenz (UW-Madison) Steve Vavrus (UW-Madison) Eric Thompson (MSA) Mike Kakuska (CARPC) Ryan Stenjen (MA) Beverly Nevalga (UW-Madison) Nick Miller (TNC)

Landowners



# Questions?