

DEVELOPMENT OF A WATERSHED MODEL TO ASSESS ALTERNATIVE MANAGEMENT STRATEGIES IN AN AGRICULTURAL WATERSHED VULNERABLE TO HIGH SEDIMENT AND P RUNOFF

Alexis Heim, Kevin Fermanich, Paul Baumgart
Natural & Applied Sciences
Environmental Science & Policy Graduate Program
University of Wisconsin - Green Bay

Map of Lower Fox River Basin and Green Bay

The Mouth of the Fox River. April 12, 2011 Credit: Steve Seilo

27 Impaired Water Body Segments by Phosphorus and/or Sediment

Approved TMDL 2006-2012

Water Quality criteria:

Lower Fox River: 0.10 mg/L TP

Tributary Streams: 0.075 mg/L TP

Source: TMDL Plan, WDNR 6/2010; 12/2011

Plum Creek

- Highest P and TSS contributor per unit area to the Lower Fox River (>93% nonpoint)
- Major reductions needed
 - 70% TSS of baseline
 - 77% TP of baseline

APPROACH

- Soil Water Assessment Tool (SWAT) model to assess water quality and hydrologic response under various climate and alternative land use/management conditions in the West Branch subwatershed (33.7 km²) of Plum Creek.
- Water quality data collected primarily at the **Main Branch** (58.6 km²) subwatershed monitoring station in Water Years 2011 and 2012 are being used to calibrate the model (>400 total samples).
 - WY 2013 data from the Main Branch and near-instantaneous loads from the West Branch station will be used to validate the SWAT model.
- West Branch loads: based on correlations between discrete constituent concentrations and continuous turbidity observations (R²>0.97, p<0.0004)
- This presentation focuses on model development, calibration and validation aspects of the overall study.
- Application of the model to development of effective and efficient allowed land management strategies for the West Plum

Land management and water quality in West Plum watershed.

Figure 2: UWGB/USGS Main Plum Creek Monitoring Station

- Stage measurements
- Flow measurements
- Automated Event Sampler
- Manual Low flow samples
- Analyzed for TP, DP and TSS

Loads (daily → annual)

	Flow (mm)	Sed (ton)	P (kg)		
	PLUM Creek at USGS Station				
WY2011	333	6,979	13,804		
WY2012	133	3,509	6,122		
WY2013	282	6,504	12,868		
yields (ha)		1.042	2.011		

Daily TSS Loads Plum Creek 2011 - '13

5 days in 3 yr w/ ~1,000,000+ kg

Daily TP Loads Plum Creek 2011 - '13

6 days in 3 yr w/ ~1,000 kg

- ~68% of annual TP load occurred in 7 days/yr (~4 events)
- 85% of annual TSS load occurred in 7 days/yr

PLUM CREEK WY LOADS AND TMDL TARGETS

	WY 2011	WY 2012	TMDL Baseline	TMDL Targets		
Extrapolate to Entire Watershed						
TSS Load (metric ton)	14722	7402	5460	1610		
TP Load (kg)	26701	11842	14310	3262		
DP Load (kg)	7544	3548				

- WY12 loads about ½ of WY11 and WY13
- About 30% of load was as DP → 70% was particulate P
- Average TSS & TP load was >7 times TMDL target
- Plum Creek Load
- = >20% of ALL Point Source Loads in Fox-Wolf
- = >30% of ALL Point Source Loads in LFB

APPROACH

- Soil Water Assessment Tool (SWAT) model to assess water quality and hydrologic response under various climate and alternative land use/management conditions in the West Branch subwatershed (33.7 km²) of Plum Creek.
- Water quality data collected primarily at the Main Branch (58.6 km²) subwatershed monitoring station in Water Years 2011 and 2012 are being used to calibrate the model (>400 total samples).
- WY 2013 data from the Main Branch and near-instantaneous loads from the West Branch station will be used to validate the SWAT model.
- West Branch loads: based on correlations between discrete constituent concentrations and continuous turbidity observations (R²>0.97, p<0.0001).
- Currently focused on model development, calibration and validation aspects of the overall study.
- Application of the model to development of effective and efficient alternative land management strategies for the West Plum watershed is planned.

WEST PLUM

PLUM CREEK SWAT MODEL 31 SUB-WATERSHEDS

Primary Hydrologic Response Units (HRUS)

• Agriculture – Dairy 6 year rotation (corn-grain, winter wheat, corn-silage, 3 years alfalfa) ~55%

- 1 Conventional tillage practice (CT)
- 2 Mulch-till (MT30)
- 3 Ridge-till or no- till (NT)
- Agriculture Cash Crop 3 year rotation (2 years corn-grain, soybean) ~21%
 - 4 Conventional tillage practice (CT)
 - 5 Mulch-till (MT30)
 - 6 Ridge-till or no- till (NT)
- Non-Agriculture
 - 7 Urban (Low density)
 - 8 Forest
 - 9 Wetland
 - 10 Grassland
 - 11 Rural Residential
 - Golf Course
 - 13 Barnyard
 - Farm Building Lot
 - 15 Quarries

 $\sim 24\%$

INITIAL SWAT MODEL OUTPUTS

Source area P Concentrations

- Variation among sites and events (n= 67)
- TP Median = 1.03 mg/L
- Only 2 samples < 0.5 mg/L TP

SUMMARY

- Loads highly event driven and exceed TMDL goals by many fold.
- Turbidity derived SSC and TP loads look promising for estimating loads.
- Need to manage landscape to reduce vulnerability and maintain resilience against large rain eventsall the time.
- Initial SWAT model developed. Next steps: analyze BMPs, landuse change needed to be move towards goals.

www.uwgb.edu/WATERSHED

Kevin Fermanich
Professor
Geoscience & Environmental Science
Director, LFRWMP

Paul Baumgart
Assistant Scientist, Watershed Analyst

Lower Fox River Watershed Monitoring Program Natural & Applied Sciences Dept. University of Wisconsin-Green Bay

Cooperators

- UW-Green Bay, UW-Milwaukee
- NOAA; US Geological Survey
- WDNR
- Arjo Wiggins Appleton Ltd
- GBMSD, Oneida Tribe of Indians
- 11 High Schools
- US Environmental Protection Agency