Surface Runoff from Manured Cropping Systems Assessed by the Paired-Watershed Method, Part 1: P, N, and Sediment Transport Bill Jokela, Mike Casler, Mike Bertram, and Mark Borchardt USDA-ARS, Marshfield and Madison, WI, and Univ. WI Agric. Research Station

AWRA-Wisconsin Section Annual Meeting March 13, 2014. Wisconsin Dells, WI

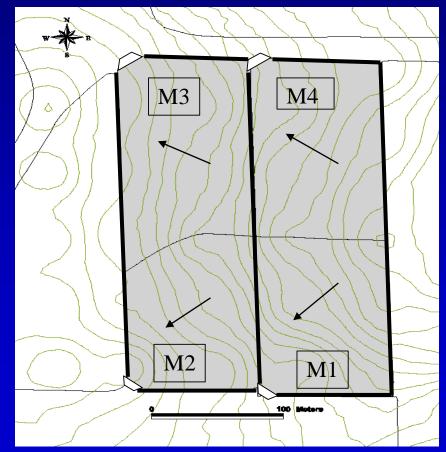
United States Department of Agriculture

COLLEGE OF AGRICULTURAL & LIFE SCIENCES University of Wisconsin-Madison

- Runoff losses of P, N, and sediment from crop fields, especially where manure has been applied, can contribute to degradation of surface waters.
- In a dairy cropping system, the silage corn phase typically poses the most serious threat to water quality.

Objective

 To evaluate runoff losses of nutrients and pathogens from different manure/crop/tillage management systems for silage corn production.



Field Site

- UW/USDA-ARS Research Station, Marshfield, WI.
- Somewhat poorly drained Withee silt loam (Aquic Glossudalfs), 1-3% slope
- Surface drainage using drive-through diversion pathways and berms

Paired-Watershed Design

- Field-scale "watersheds"
- Four fields 3.4-4.4 acre each

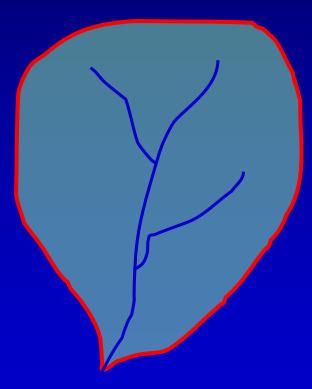
6.4 ha, or 16 acres total

Gauge Station: Runoff Monitoring

24-inch H flumes with approach channels

Gauge Station: Runoff sampling

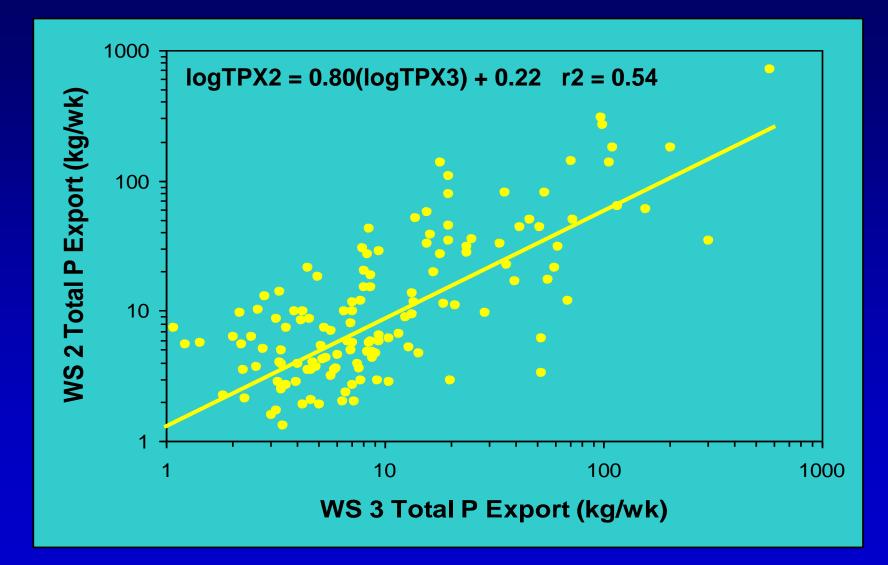
Runoff, Nutrients, and Sediment


- Runoff quantity
- Suspended sediment (SS)
- Total P (TP)
- Dissolved P (DP)
- TKN, Nitrate-N, Ammonium-N

Individual samples combined into a flowweighted composite

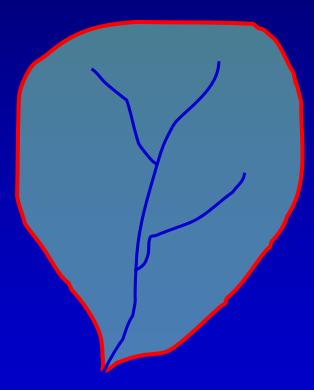
Protozoan, bacterial, and viral pathogens (See M. Borchardt presentation)

Paired Watershed Design

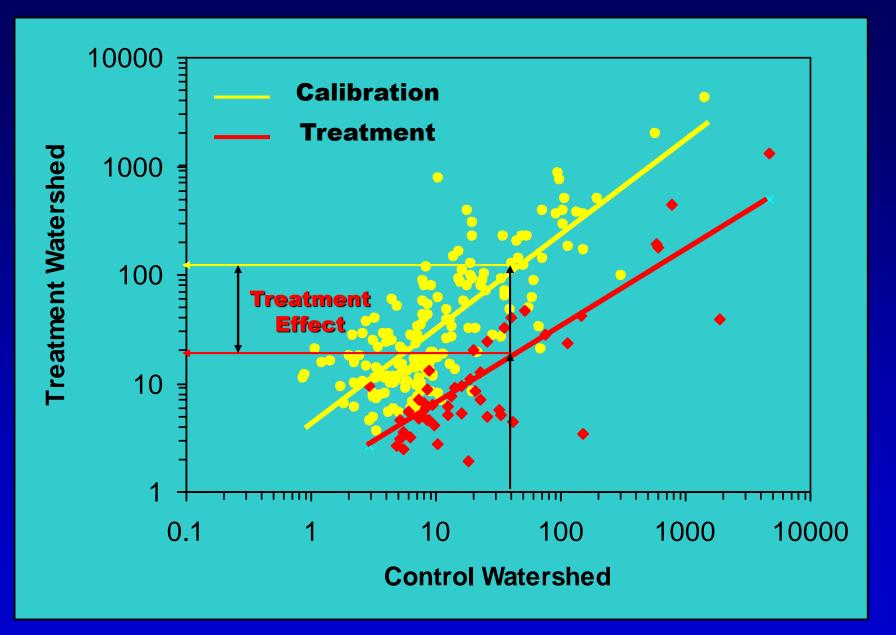

Calibration Period

Control Watershed

Treatment Watershed Credit: D. Meals


Calibration Regression

Credit: D. Meals


Paired Watershed Design

Treatment Period

Control Watershed

Treatment Watershed Credit: D. Meals

Credit: D. Meals

Fall Manure and Chisel Plow (Control, M1)

Manure Rate (avg): 5100 gal/ac, 14% DM, 145 N, 75 NH₄-N, 53 P₂O₅ lb/ac

Fall after chisel plowing

Spring after field cultivate/plant emergence

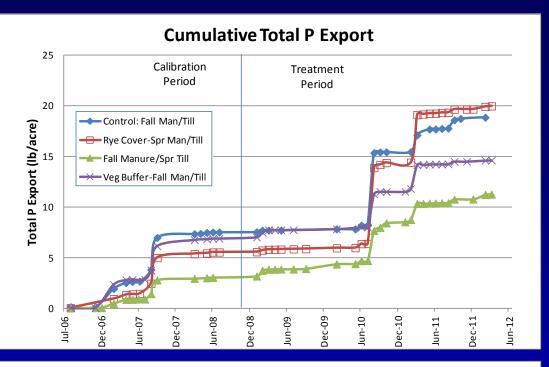
Vegetative buffer/ waterway with fall manure and chisel plow (M4)

Legume-grass mix (alsike clover, timothy, brome)

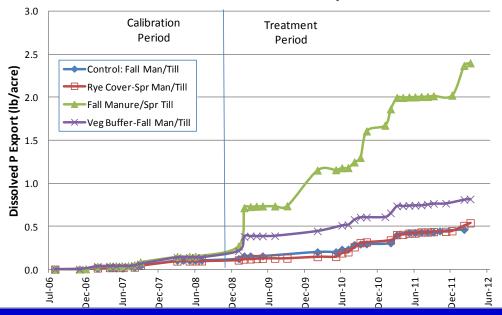
Rye Cover Crop withSpring Manure and Chisel Plow (M2)FallSpring

5/8/09

11/7/08

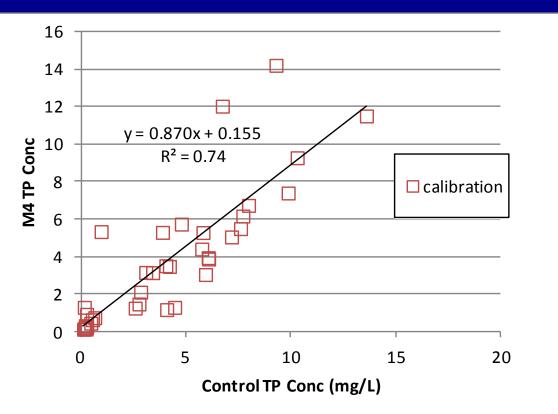

Fall Surface-applied Manure with Spring Chisel Plow (M3) (surface manure over-winter)

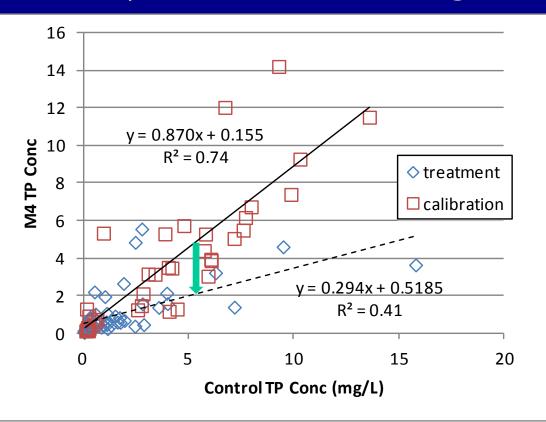
Treatment Period Results


Annual Runoff and N and P Loads

Mean	Runoff	Suspend Sediment	Total P	Dissolved P	Total N	NO ₃ -N
	inches			lb/acre		
Annual Load	8.5	1680	3.2	0.33	16.9	4.7
Snowmelt /Total	0.39	0.05	0.11	0.45	0.24	0.35

Cumulative Total P Export


Cumulative Dissolved P Export

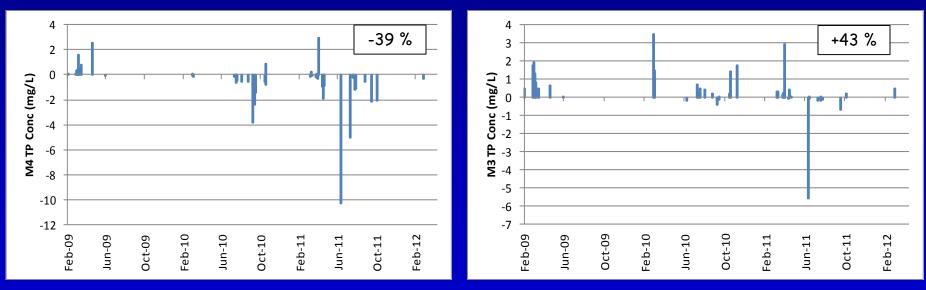

Cumulative Dissolved P Export

Did management treatment significantly affect runoff nutrients? Compare Treatment vs Control regression during Calibration and Treatment Period

Example: Total P Conc. - Veg. Buffer-Fall Manure/Till

Did management treatment significantly affect runoff nutrients? Compare Treatment vs Control regression during Calibration and Treatment Period Example: Total P Conc. - Veg. Buffer-Fall Manure/Till

Statistical Signif. (permutation test)


- Slope **
- Mean **

What was magnitude of treatment effect? Compare values observed during treatment period to values predicted from calibration period (Observed-Predicted)

Example: Total P Concentration

Veg. Buffer-Fall Manure/Till/ (M4)

Fall Manure/Spring Till (M3)

Negative = Decrease from treatment Positive = Increase from treatment

Observed-Predicted: % Change

	Rye cover – Spring Man/Till	Veg Buffer – Fall Man/Till	Fall manure – Spring Till
		Concentration	
Susp Sed.	-47	-45	-36
Total P	-28	-39	43
Dissolved P	-16	81	127

*NS indicates mean and slope difference of Calibr-Trt regressions nonsignificant at P-value of 0.10.

Observed-Predicted: % Change

	Rye cover – Spring Man/Till	Veg Buffer – Fall Man/Till	Fall manure – Spring Till
		Concentration	
Susp Sed.	-47	-45	-36
Total P	-28	-39	43
Dissolved P	-16	81	127
		Export (Load)*	
Susp Sed.	-9	-62	NS
Total P	NS	-42	NS
Dissolved P	57	25	237

*NS indicates mean and slope difference of Calibr-Trt regressions nonsignificant at P-value of 0.10.

Summary

- Snowmelt runoff is important: 11 to 45% of P and N export (avg. across treatments).
- Surface over-winter manure (fall manure/spring till) increased TP and, especially, DP concentration and DP load, but decreased SS concentration.
- Rye cover crop-spring manure/till decreased SS, TP, and DP concentrations and SS load, not TP or DP load.
 - Limited growth of rye in fall
 - Increased runoff

Summary

- Vegetative buffer/waterway-fall manure/till decreased runoff (slightly) and concentration and load of SS and TP (but not DP); the most effective management system in this study.
- None of the manure-crop management systems were effective in controlling dissolved P in runoff.

United States Department of Agriculture

