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Research Objective
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Question

How does hydroperiod and 
vegetation diversity influence 
stormwater treatment and soil 
stability in a constructed wetland?

Hypothesis

A combination of a fluctuating 
hydroperiod and diverse 
vegetation will be the most 
effective at stormwater treatment 
(TSS, N, and P) and soil stabilization. 

This is one component of a joint project between BSE, Botany, and Civil-
Environmental Engineering departments aimed at testing relationships between 

native plant diversity, hydrology, and a range of ecosystem services over multiple 
growing seasons. 
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Wetland Swale Plots
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Subsurface Heterogeneity

• 9 soil borings taken in 
2006 & 2007

• Clay layer discontinuities

• Thicker clay in Swale III
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Jeff Miller, unpublished



Water Level Recession Rate
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Water Level Recession Rate
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Swale I 

Swale II 

Swale III 

1.7 cm/day
Intermediate Water Recession

6.0 cm/day
High Water Recession

1.2 cm/day
Low Water Recession

Jeff Miller, unpublished



Plant Productivity
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Swale III was consistently 
the most productive

Doherty and Zedler, in review
Graph by Jeff Miller



Plant Diversity
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Swale II was consistently the 
most diverse

Doherty and Zedler, in review
Graph by Jeff Miller



Results | Soil Stability
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Cohesive Strength Meter (CSM)
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Soil Substrates
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Critical Shear Stress by Substrate
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Frequency of Soil Substrate
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Soil Stability by Swale
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Results | Water Quality

21



Siphon Sampler Locations
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Pretreatment in Retention Pond

23Results | Water Quality

Based on a discrete nutrient 
concentrations at a fixed depth



Stormwater Sampling Regime

• Multiple samples over 
storm hydrograph 

• 13 select storms
– September 18, 2011 to   

October 13, 2012
– 6 to 65 mm of precipitation
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ISCO Sampler Locations
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Swale Nutrient Removal
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Conclusions
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Influence of Hydrology

• Fluctuating Hydroperiod 
– Promoted establishment of 

highly-resistant, biotic 
assemblages 

– Enhanced nutrient removal  

• Inundated Hydroperiod
– Facilitated the development 

of highly-erodible, abiotic 
substrates

– Contributed to the mass 
export of nutrients

28Conclusions



Influence on Vegetation
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Swale III
↑ Biomass producƟon

↓ Soil stability
↓ Nutrient removal

Swale II
↓ Biomass producƟon

↑ Soil stability
↑ Nutrient removal

Discussion



Conclusions

• Macrophyte producƟvity ≠ Stormwater treatment

• Need direct assessment, not rapid assessment 

30Conclusions
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Additional Material
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Wetland Swale Treatments
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Swale I
Intermediate recession rate

Moderate plant biomass
Moderate plant diversity

Swale II
High recession rate

Lowest plant biomass
Highest plant diversity

Swale III
Low recession rate

Highest plant biomass
Lowest plant diversity

Doherty and Zedler, in review; Jeff Miller, unpublished Additional Material



Untreated Stormwater
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Bryophyte Cover
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Cohesive Strength Meter

Results | Soil Stability



Cohesive Strength Meter
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Critical Shear Stress (τc) Estimation
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Part 1

Part 3

τc = 2.10 Pa

Additional Material



Development of Substrate
• Swales I and II

– More open canopies = Surface 
light penetration (Timofeev 1959)

– Fluctuated between wet and dry 
conditions

– Supported establishment of algae 
and moss

• Swale III
– Inundation = Anaerobic 

conditions
– Inhibited establishment of moss 

and algae (Miller and Zedler 2003, Day 
and Megonigal 1993)

– Supported accumulation of OM
40DiscussionAdditional Material



Low Nutrient Removal

• Facilities in series (Hathaway and Hunt 2010)

• Irreducibly low concentrations (Schueler and Holland 2000)

• Baseline concentration of nutrients (Moore et al. 2011)

• Nutrient-rich topsoil
• RE as a metric for treatment (Strecker et al. 2001, Lenhart and Hunt 2011)
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Retention Pond Inlet Wetland Swales Inlet
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Stabilization by Soil Substrate 

• Biotic > Abiotic Substrate
– Biotic: Physical, biological, 

chemical processes 
(Paterson et al. 2000, Whitehouse et al. 
2000)

– Abiotic: Physical mechanisms 
(Lundkvist et al. 2007)

• Algae: Extracellular 
Polymeric Substances (EPS) 
(Sutherland et al. 1998)

42DiscussionAdditional Material



Removal of Total Nitrogen

• Removal mechanisms: 
– Mineralization: organic nitrogen → ammonia
– Volatilization: ammonia → atmospheric N2

– Denitrification: nitrate → atmospheric N2

– Plant uptake
– Particulate Settling

• Export mechanisms: 
– Nitrogen fixation: atmospheric N2→ ammonia
– Particulate resuspension
– Diffusion of dissolved forms

43Additional Material



Removal of TSS
• Deeper inundation, 

greater settling (Nichols 1983)

• Swale III
– Frequent inundation, 

greater TSS export 
– Resuspension of OM
– High soil moisture 

(Grabowski et al. 2011)

• Swales I and II
– Moss and algal mats 

(Turetsky 2003)

– Diverse stem architecture 
(Vermaat et al. 2000)

44DiscussionAdditional Material



Removal of TN

• Highest removal with 
fluctuating hydroperiod 
(Busnardo et al. 1992, Jordan et al. 2011)

– Nitrification (aerobic) + 
denitrification (anaerobic) 

• Swale III
– Inundated conditions; 

average export of TN
– Increased particulate 

resuspension
– OM accumulation, 

increases TN export 
(Thoren et al. 2004)

45DiscussionAdditional Material



Removal of TP
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• Fischer (2004): 10%-25% 
of studied wetlands 
exported P

• Highest removal with 
fluctuating hydroperiod 
(Busnardo et al. 1992)

– Increased oxygen sediment 
concentrations (Fisher and 
Acreman 2004)

• Prolonged inundation: 
mobilization of Fe and Al 
(Boers and Zedler 2008)

DiscussionAdditional Material



TDP :  TP

• TDP:TP = 42% → 52% over retenƟon pond
• Good et al. (2012)

– Phosphorus solubilization can be described as a 
linear relationship between soil phosphorus 
concentration and an extraction coefficient 
(0.006)

– Average soil phosphorus = 49.1 mg L-1

– Dissolved phosphorus loss (DPsoil) = 0.03 mg L-1

47Additional Material
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