

Geoscience

Engineering Professional Development

Geological Engineering

Wisconsin Geological Survey

District-Scale Geothermal Exchange Fields

Modeling and Monitoring Results

Matthew Harper¹, Christopher Choi¹, David Hart², and James Tinjum³

(1) Biological Systems Engineering, UW-Madison

- (2) Wisconsin Geological and Natural History Survey
 - (3) Geological Engineering, UW-Madison

Outline

Project Objectives and Justification □ Site Description □ Site Characterization Modeling Results Monitoring Results **□**Future Work □Q&A

Objectives

- Determine the effect, if any, geothermal heat exchange systems have on groundwater quality
- Use a combination of monitoring data and modeling results to predict short and long term environmental risks

Justification

- □ Temperature has a positive effect on scorodite (FeAsO₄·2H₂O) dissolution
- □ Core samples indicate arsenic is present on site
- Arsenic has harmful short and long term health effects

Site Description

- To date, Epic Systems
 Corporation has installed
 over 5,500 boreholes
- Within each a fluid circulates to transfer energy
- Epic is cooling dominant;
 i.e. more heat is transferred to the ground than from it, causing a year over year temperature increase

Site Description

Arial View of Epic Campus, looking south. (John Hart, State Journal Archives)

AWRA 2015 University of Wisconsin-Madison Section Meeting Presentation 3/6/2015 Matthew Harper Slide 6

Site Description

Site Characterization

Arsenic vs. Depth - Epic Core 4

XRF Measurements (Clay and Hart, 2014)

AWRA 2015
University of Wisconsin-Madison

Site Characterization

Arsenic vs. Depth - Epic Core 2

XRF Measurements (Clay and Hart, 2014)

AWRA 2015 University of Wisconsin-Madison Section Meeting Presentation 3/6/2015

Matthew Harper Slide 9

Modeling Results

- Computational fluid dynamics allows us to solve the PDE's that govern heat transfer
- In order to reduce computational time, we have verified that using 2D models as "slices" of 3D models will not introduce significant errors.

Comparison

Borefield Scale

Apply design data as a heat generation source to the field area

Computational Domain

AWRA 2015 University of Wisconsin-Madison Section Meeting Presentation 3/6/2015

Matthew Harper Slide 12

Design Inputs

AWRA 20	15
University	of Wisconsin-Madison

Results

Results

Temperature contours for conduction only (left) and with advection (right) for a Darcy's velocity of 0.3 m/day

Management Strategies

- Even under idealized conditions, ground temperatures still increase over 10° C
- Epic currently practices passive management; when a field temperature is too high, the field is temporarily shut down
- More active management may be needed for both the efficiency and sustainability of the system

Monitoring Results

- Currently 2 of the 5 planned monitoring wells are installed
- Each has shallow and deep piezometers and a blank for fiber optic installation
- Water samples prior to full-field activation for background levels

Example monitoring well installation. Horizontal distance greatly exaggerated.

Monitoring Results

- □ Samples taken Aug. 27th and 28th, 2014
- Shallow and deep aquifer sampled at north and east wells

ALL DATA mg/I UNLESS NOTED		Nitrogen, Nitrate	A kalinity	Chioride	Arsenic	Calcium	Copper	Iron	Potassium	Magnesium	Manganese	Bodium	Phosphorus	Lead	Sulfate	Zine
Date Prepared		11-Sep	15-Sep	11-Sep	12-Sep	12-Sep	12-Sep	12-Sep	12-Sep	12-Sep	12-Sep	12-Sep	12-Sep	12-Sep	12-Sep	12-Sep
Date Analyzed		12-Sep		12-Sep	12-Sep	12-Sep	12-Sep	12-Sep	12-Sep	12-Sep	12-Sep	12-Sep	12-Sep	12-Sep	12-Sep	12-Sep
Method		SM 4110 B	SM 2320 B	SM 4500 CI-E	EPA 200.7	EPA 200.7	EPA 2007	EPA 200.7	5M 4500 P-F	EPA 200.7	EPA 200.7	EPA 200.7				
Lab#	Site															
474-14-1	East PZ-D	0.3	320	2.8	0.005	60.49	<0.002	0.090	1.89	42.581	0.01	3.2	0.043	<0.005	15.4	0.005
474-14-2	North PZ-S	12.3	340	37.8	0.005	82.55	<0.002	0.100	1.77	43.711	0.003	26.3	1.595	<0.005	22.7	0.002
474-14-3	North PZ-D	0.2	312	<0.5	<0.004	54.75	<0.002	0.07	1.18	40.38	0.007	3.5	0.13	<0.005	10.90	<0.002
474-14-4	North PZ-S	12.5	348	38.0	0.007	82.08	<0.002	0.52	1.78	42.96	0.006	29.0	1.81	<0.005	23.10	0
474-14-5	East PZ-S	11.2	336	39.5	0.005	85.05	0.03	0.89	6.15	44.59	0.011	34.3	0.74	<0.005	27.3	0.01

AWRA 2015 University of Wisconsin-Madison Section Meeting Presentation 3/6/2015

Highlighted Results

- Results typical for the area, with significantly higher Nitrate, Chloride, Sodium, and Sulfate levels in the shallow aquifer
- □ All samples show arsenic levels below EPA guidelines (<10 ppb)

Site	Nitrogen, Nitrate	Chloride	Phosphorus	Arsenic
East PZ-S	11.2	39.5	0.74	0.005
East PZ-D	0.3	2.8	0.043	0.005
North PZ-S	12.5	38.0	1.81	0.007
North PZ-D	0.2	<0.5	0.13	<0.004

All values mg/L

Future Work

- Drill and install 3 additional monitoring wells, nested to determine groundwater flow
- Continue collecting groundwater samples to establish background levels; after full field activation, additional samples will be used to monitor contaminant levels
- Quantify temperature effects on arsenic release and develop a coupled temperature and mass transport model for long term predictions of risk
- Develop and test management strategies to achieve lower, steady borefield temperatures

Acknowledgements

- Epic Systems Corporation and associated contractors (Bertram Drilling, Morse, MEP Associates, General Heating and Cooling, TEEL Plastics)
- Funding from the Wisconsin Groundwater Coordinating Council

Questions?

AWRA 2015 University of Wisconsin-Madison