Evaluating aquifer flow conditions using heat as an in-well tracer

Steve Sellwood, UW – Madison Department of Geoscience Jean Bahr, UW – Madison Department of Geoscience Dave Hart, Wisconsin Geological and Natural History Survey

Wisconsin Geological & Natural History Survey

Evaluating aquifer flow conditions using heat as an in-well tracer

Steve Sellwood, UW – Madison Department of Geoscience Jean Bahr, UW – Madison Department of Geoscience Dave Hart, Wisconsin Geological and Natural History Survey

Funding provided by:

University of Wisconsin Water Resources Institute

Evaluating aquifer flow conditions using heat as an in-well tracer

Steve Sellwood, UW – Madison Department of Geoscience Jean Bahr, UW – Madison Department of Geoscience Dave Hart, Wisconsin Geological and Natural History Survey

Funding provided by:

- University of Wisconsin Water Resources Institute
- Geological Society of America Student Research Grant

What can borehole flow tell us?

What can borehole flow tell us?

- Identify permeable features
- Identify aquitards
- Determine flow direction (up or down)
- Understand implications for contaminant transport

Research goals:

- Use heat as an in-well tracer to measure borehole flow
- Use borehole flow data to characterize aquifer flow conditions

In-well heat tracer tests:

 Induce heat pulses at discrete depths using downhole heater

Peter Sobol, UW - Madison

In-well heat tracer tests:

- Induce heat pulses at discrete depths using downhole heater
- Monitor temperatures in the well with fiber optic Distributed Temperature Sensing system (DTS)

In-well heat tracer tests:

- Induce heat pulses at discrete depths using downhole heater
- Monitor temperatures in the well with fiber optic Distributed Temperature Sensing system (DTS)
- Use heat movement to determine flow direction, calculate flow velocities

Optical Borehole Images of the Columbus borehole

Optical Borehole Images of the Pheasant Branch borehole

122 borehole flow velocity measurements in 8 wells

- 122 borehole flow velocity measurements in 8 wells
- Velocities ranged from approximately 0.01 m/min (0.05 gpm) to 30 m/min (36 gpm) and 0 m/min

- 122 borehole flow velocity measurements in 8 wells
- Velocities ranged from approximately 0.01 m/min (0.05 gpm) to 30 m/min (36 gpm) and 0 m/min
- Readily identify flow direction, discrete flow zones, and porous media flow

- 122 borehole flow velocity measurements in 8 wells
- Velocities ranged from approximately 0.01 m/min (0.05 gpm) to 30 m/min (36 gpm) and 0 m/min
- Readily identify flow direction, discrete flow zones, and porous media flow
- Results for no vertical flow may be informative with respect to aquifer flow velocity and/or thermal conductivity

- 122 borehole flow velocity measurements in 8 wells
- Velocities ranged from approximately 0.01 m/min (0.05 gpm) to 30 m/min (36 gpm) and 0 m/min
- Readily identify flow direction, discrete flow zones, and porous media flow
- Results for no vertical flow may be informative with respect to aquifer flow velocity and/or thermal conductivity
- Heat tracers are an effective tool for borehole flow characterization

Experiment Design

 A temperature is recorded for every meter of cable

Temperatures are re-measured every 40 seconds