Geochemical study of aquifer conditions on radium in the Cambrian-Ordovician aquifer

Madeleine Mathews, Matthew Ginder-Vogel, Madeline Gotkowitz WI AWRA 2018 March 9, 2018

The US EPA has set a Maximum Contaminant Level for radium in drinking water

Regulated Radionuclide	Maximum Contaminant Level (MCL)
Total Radium (²²⁶ Ra + ²²⁸ Ra)	5 pCi/L
Gross Alpha Particle	15 pCi/L
Uranium	30 μg/L

- Ingestion of radium through drinking water
- Risk for osteosarcoma and other bone disease

The MCL is defined as the combined activity of the two major radium isotopes

U - Uranium **Th** - Thorium **Pa** - Protractinium **Ra** - Radium

Radium isotopes can be emitted into aquifer systems from parent isotope radioactive decay

• Alpha Decay

Example:

$$^{^{232}}_{^{90}}\mathrm{Th} \rightarrow ^{^{228}}_{^{88}}\mathrm{Ra} + ^{4}_{^{2}}\alpha$$

Radium sorbs readily to aquifer solids

Anoxic conditions can result in loss of mineral sorption sites

Elevated total dissolved solids can result in sorption site competition

MAIN QUESTIONS

- 1. What are the sources of radium in the Midwestern Cambrian-Ordovician aquifer?
- 2. How do geochemical conditions affect radium concentrations?

The study site is located in the Midwestern Cambrian-Ordovician groundwater system

Cambrian-Ordovician Aquifer System. In Ground Water Atlas of the United States: Iowa, Michigan, Minnesota, Wisconsin. HA 730-J; USGS.

March 2018

Madison hydrostratigraphy and well construction

 Twenty-two shortscreened monitoring wells

Groundwater Characterization

- Aqueous analysis:
 - pH, temperature, specific conductance, dissolved oxygen (DO)
 - ²²⁶Ra and ²²⁸Ra analysis
 - ²³⁸U and ²³²Th analysis
 - Nitrate, sulfate, chloride (lon chromatography)
 - Ba, Ca, Fe, Mg, Mn, Na, Si (Inductively-coupled plasma optical emission spectroscopy)

Sampling at 22 monitoring wells

Aquifer solids across hydrostratigraphic units were characterized for elemental composition by X-ray spectroscopic techniques

WGNHS Core Repository

Well borehole cuttings

Portable X-ray Fluorescence (pXRF)

March 2018

Radium concentrations in the aquifer system

- Monitoring wells
- Total Ra concentration from sampling in 2016-2017

March 2018

Radium concentrations in the aquifer system

- Monitoring wells
- Total Ra concentration from sampling in 2016-2017

Parent isotopes can be found in shaley facies or coatings on sand grains

Solid-phase elemental composition from pXRF

Madison municipal wells contain greater total Ra concentration

- Municipal wells
- Ave. total Ra in 19 municipal wells in Madison, WI
- DO sampled in 2017

Anoxic conditions contribute to increased radium concentration in monitoring wells

- Monitoring wells
- Dissolution of minerals due to anoxic conditions

Shallow wells have elevated total dissolved solids

- Monitoring wells
- Fewer available sorption sites
- Confined and unconfined conditions

Conclusions – the effect of geochemical conditions on radium in the Cambrian-Ordovician aquifer

- Ra in C-O aquifer
- Confined systems: anoxic conditions may contribute to elevated Ra
- Unconfined systems: elevated dissolved solids may contribute to elevated Ra

Adapted from: Tricca, A.; Porcelli, D.; Wasserburg, G. J. Factors controlling the groundwater transport of U, Th, Ra, and Rn. J. Earth Syst. Sci. **2000**, 109 (1), 95–108.

Future studies

- Isotopic signature of Ra in Cambrian-Ordovician aquifer for potential solidphase sources
- Quantify potential solid-phase sources (speciation, dissolution, sorption potential)
- Geochemical modeling of Ra leaching via MODFLOW reactive transport models to look at contribution by stratigraphy

Examples of elevated Ra across WI

Acknowledgements

Madison

Water Utility

•••

Wisconsin Geological & Natural History Survey

Ginder-Vogel lab group

Funding

Water Resources Institute

Special thanks to...

Pete Chase, WGNHS WI State Laboratory of Hygiene Brookfield Water Utility Madison Water Utility

WI Department of Natural Resources

Wisconsin State Laboratory of Hygiene UNIVERSITY OF WISCONSIN-MADISON

University of Wisconsin

March 2018