Engineering Soil Types Capacity to Remove Pollutants as a Function of Depth in Bioretention Systems

Judy Horwatich, U.S. Geological Survey Roger Bannerman WDNR\USGS

What Are We Going To Talk About?

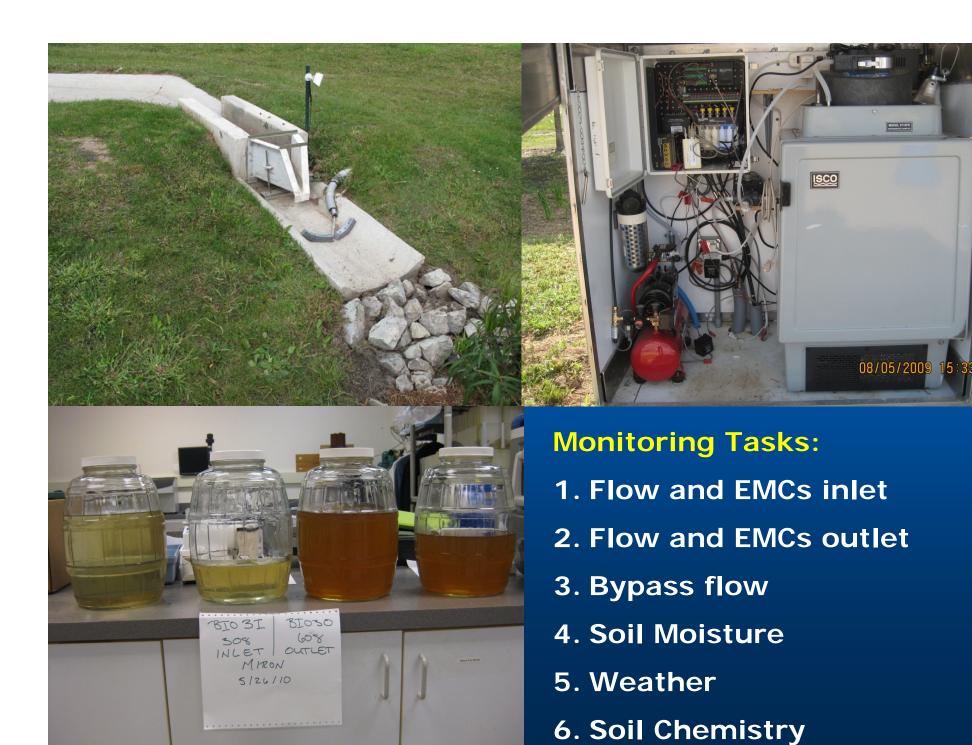
- Study Design to Improve State Technical Standards
- Results from first 2
 years of monitoring
 Media-1 Bioretention
 Cells in Neenah
- Modification to New Soil Media
- Results from third year of monitoring Media-2

Guidelines for Depth of Engineered Soil – William Hunt, 2006

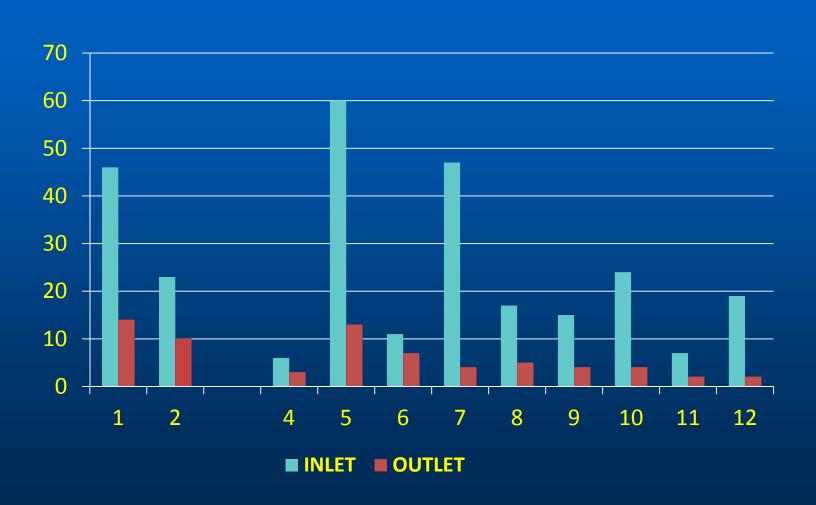
Pollutant	Minimum Engineered Mix Depth
TSS	No Minimum
Metals	18 inches
TP	24 inches
TN	36 inches

Media-1 for Three Tests Systems in Neenah – Technical Standard 1004

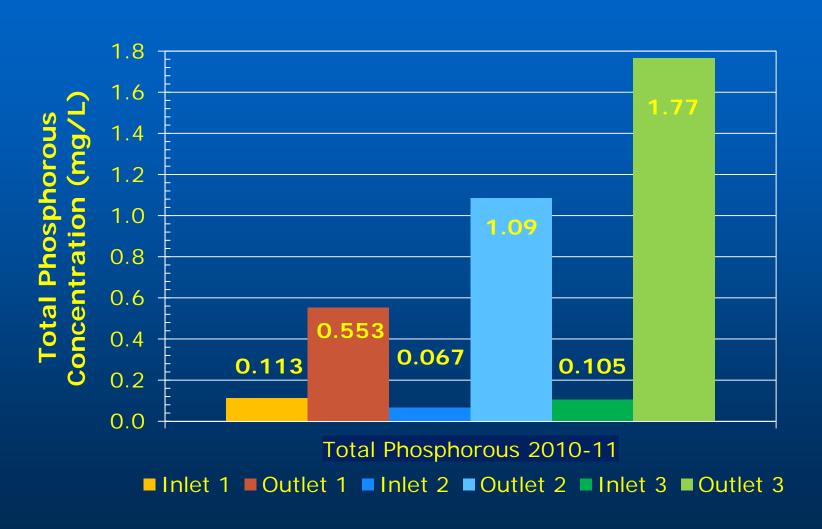
Engineered Soil Mix 50% sand/50% compost



Media-1 Efficiency Ratios for TSS:


Eff Ratio = 1- (avg. outlet conc./avg. inlet conc.)

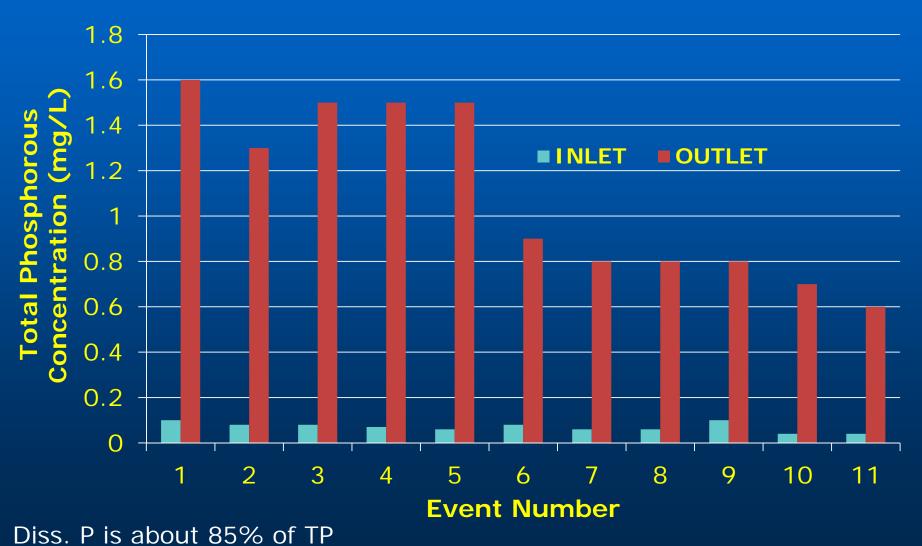
Site	Inlet TSS, mg/l	Outlet TSS, mg/l	Efficiency Ratio TSS, %
Cell 1 (16)	113	10	91
Cell 2 (19)	31	6	81
Cell 3 (21)	27	9	65


TSS Efficiency Ratios from Other Sites

Site	Inlet TSS, mg/l	Outlet TSS, mg/l	Efficiency Ratio, %
Brown, 2010	25	7	71
Hatt, 2008	39	4	76
Davis,2007	34	13	62
Li, 2009	66	6	88

Media-1 Suspended Sediment Concentration, mg/l, at the Inlet and Outlet of 2 Foot Depth Media

Media-1 Comparing Average Inlet and Outlet Total Phosphorus Concentrations



Reductions -400 percent or greater

Export of TP at Other Sites

Site	TP Inlet, mg/l	TP Outlet, mg/l	Efficiency Ratio TP, %
Hatt, 2008: HO	0.07	0.17	-398 (300mg/Kg – P)
Hunt, 2006: HP			-269
Li,2009: HO	0.1	0.35	-200

Media-1 Total Phosphorus Concentrations at the Inlet and Outlet of 2 Foot Depth Media-1

Simulating Event with City Water to Determine Mobility of Media Particles

Type of Value	2 Foot Depth Media	3 Foot Depth Media
City Water - Inlet TSS	< 2 mg/l	< 2 mg/l
City Water - Outlet TSS	3	3
Last Event Outlet TSS	6	9
City Water – Outlet TP	0.6	0.9
Last Event Outlet TP	0.6	0.9
Particle Size - Outlet	< 63 microns	< 63 microns

TP Concentration After 2 Years in Media-1 at Different Depths

Type of Sample	TP Concentration, mg/kg
Media-1 before installed	367
2 inches	223
4 to 6 inches	302
18 inches	304
24 inches	212

Media-1 During Installation

Immediate Change to Bioretention Engineered Soil Mix – Technical Standard 1004

The planting mix shall consist of 70 to 85% sand and 15 to 30% compost

Engineered Soil Mixes Designed to Eliminate P Export

Source	% Sand	% Fines	% O M	CEC, meq/100g	Perm. in/hr
Austin	70-90	2-10	1-4	10	
FAWB	Loamy sand	< 3 w/w	<5 w/w		4-12
NCSU	85-88	8-12	3-5	>10	2

What is P Reduction Using Suggested Soil Mix?

Source	Inlet TP, mg/l	Outlet TP, mg/l	TP Removal, %	Comment
Brown, 2010	0.073	0.059	19 (1 event higher)	2.5% Compost
Hunt, 2006			22-68	Low P index (<30)
Hatt, 2008	0.4	0.07	82	Sandy Ioam

Arkal Pressurized Sand Filter

TSS 83%
TP 54%
Diss. P 9%

Austin Surface
Sand Filter – 18
to 24 inches
Thick

TSS 75 to 87% TP 27 to 61%

What About Removing Dissolved Phosphorus?

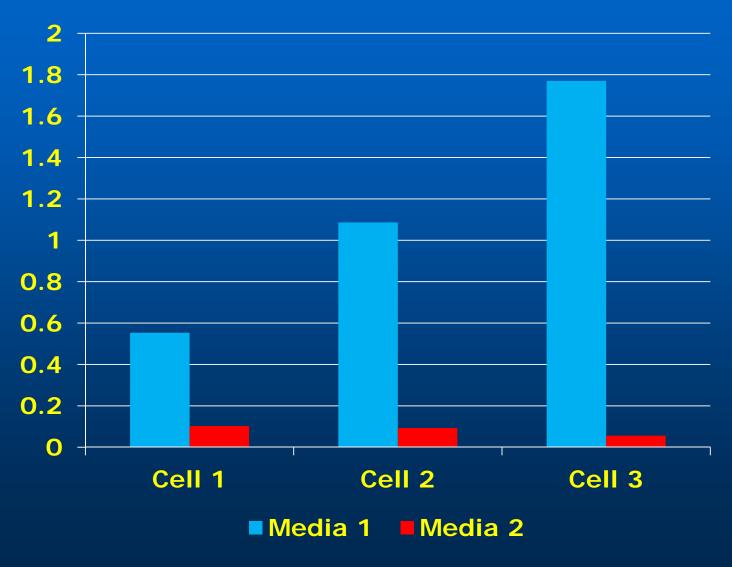
- 1. Conduct
 Leaching Tests
 on Media-1 and
 NCSU Mix
- 2. Determine Best Additive to Enhance P Sorption.

Mauricio Avila and Philip Barack-University Soils and Plant Lab. & Soils Dept.

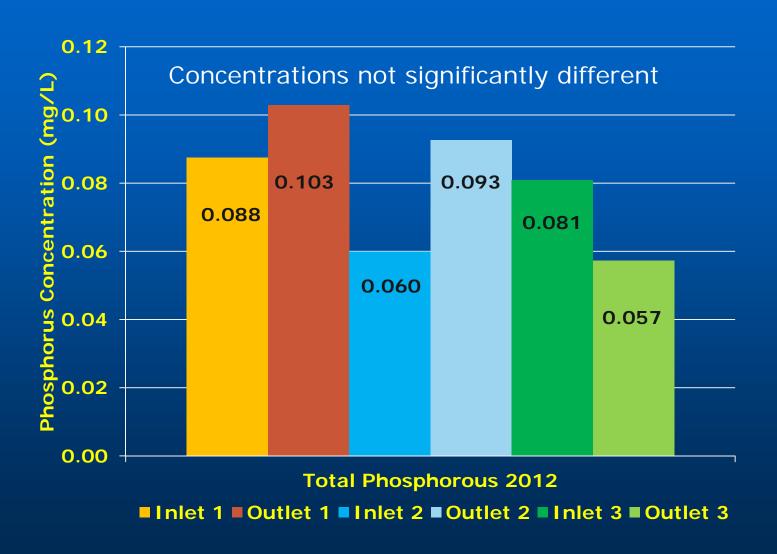
Choices of Additives to Reduce Dissolved P

Media-2 for Three Tests Systems in Neenah

86% Sand; 11% Peat Moss; 3% SorbtiveMedia (Imbrium)



Media-2 Efficiency Ratios for TSS:


Eff Ratio = 1- (avg. outlet conc./avg. inlet conc.)

Site	Inlet TSS, mg/l	Outlet TSS, mg/l	Efficiency Ratio TSS, %
Cell 1 (16)	62	8	88
Cell 2 (16)	32	9	71
Cell 3 (14)	46	12	74

Comparison of Outlet Total P Concentrations for Media 1 and 2

Media-2 Comparing Average Inlet and Outlet Total Phosphorus Concentrations

Implication from this Study

- Modify the Technical Standards
- Layering growth layer on top of media
- Removal of Dissolved Phosphorous by Sorptive Media

