Testing Highly Instrumented Floating Interrogators (HIFI) for Dense Measurement of Stream-Aquifer Interactions

Catherine Christenson, David Hart, Michael Cardiff

Wisconsin Geological & Natural History Survey

Outline

- Background
- Method
- Results
 - Grant River
 - Plainfield Lake
 - Mukwonago River
- Data Value
- Future Applications

Background

- Hydrologic data most common collected as point scale measurements
 - Snapshot in time
 - Logging through time at a "fixed" station
- Collecting data in a "Lagrangian" framework can fill in spatial gaps within a stream network

Research Question

Can we design a method to collect spatially and temporally dense geolocated sets of hydrologic data on small streams to help understand stream quality and gw/sw interaction?

Collected Parameters Water Quality

- Temperature
- Dissolved Oxygen
- pH
- Electrical Conductivity
- Nitrate*
- Chloride*

Geophysical

- Streambed Conductivity
- Depth of Water

GoPro Video

Overall Method

 Collecting geo-located suite of hydrologic data in a mounted canoe float

 Utilizing low-cost equipment and opensource Arduino technology

Mukwonago River

6/27/2018

Plainfield Lake, Central Sands Region, WI

9/20/2018

Grant River Results 7/25/18

Grant River Results - zoomed in

Temperature

• 13.6 - 14.5

• 14.7 - 15.2

15.3 - 15.5

15.6 - 15.8

15.8 - 16.5

16.6 - 17.3

9 17.4 - 17.6

17.6 - 17.9

• 17.9 - 18.2

18.3 - 18.9

(deg C)

Video

https://www.youtube.com/watch?v=sEjaggUVrc8

Google: "Grant River Float 7/25/2018"

Method Limitations

- Site Accessibility
- Probe Response Time
- Probe Precision/Quality

Method Utility & Future Applications

 Developed method that is low-cost, easy to process compared to other methods

 Provides guidance to areas of interest within a surface water body related to groundwater discharge and water quality changes

 Repeated stream floats can help understand stream quality and dynamics under differing hydrologic conditions

EM31 Operating Principles

- Instrument induces
 electrical current in earth
 with alternating current
 in coil in one end of
 instrument (No direct
 contact with ground)
- More induced current
 Better conductor
- Changing coil orientation
 changes depths
 sensed

Normalized Depth (d/intercoil spacing)

Cumulative Response Curve

Normalized Depth (d/intercoil spacing)

Streambed Conductance from 3-layer system

$$\sigma_t = \sigma_1[1 - R_H(z_1)] + \sigma_2[R_H(z_1) - R_H(z_2 + z_1)] + \sigma_3 R_H(z_2 + z_1)$$

 $\sigma = \text{conductivity of the layer}$

z = normalized depth (depth/intercoil spacing)

 $R_{\rm H}$ = relative influence of current flow as a function $R_H(z) = (4z^2+1)^{1/2}-2z$ of depth

Video

https://www.youtube.com/watch?v=sEjaggUVrc8

Google: "Grant River Float 7/25/2018"