An Assessment of Barriers to Fish Passage in the Driftless Area

Michael A. Miller, Caitlin O'Connell, Julia Kohlberg Wisconsin Department of Natural Resources Bureau of Water Quality Why did the fish cross the road? Study Goal and Objectives
Importance of Stream Continuity
Study Design and Results

Overview.

Study Goal

Is stream fragmentation a problem?

Objectives

- Use random sample to characterize all crossings
- Estimate total number of barriers
- Estimate frequency of occurrence of different barrier types

Importance of Stream Continuity

To function, both roads and rivers need to be continuous.

Obvious Barriers 3,800 dams in Wisconsin

Less obvious barriers

- Primary design consideration, move traffic and water
- 70,000+ road crossings of streams and rivers in WI

Upstream spawning migrations of trout

Spawning habitat

Nursery habitat

Downstream movement

for overwintering:

- Trout
- Catfish
- Smallmouth bass
- Turtles

Numerous species migrate, most species disperse

Longnose Dace

March of the Mayflies

Significant (100s of m/yr) upstream movement of mayflies, amphipods, snails.

Stream corridors increasingly important wildlife pathways

Whether turtle or trout, the environment is a patchy place. Habitats, food, mates, are not always found in one area.

Study Design and Results

Study Design:

- NHD & TIGER Data
- Probabilistic
- Recursive quadratic sampling
- Interstates weighted

Data Collected at crossings

Roadway information Crossing structure information Stream flow characteristics

1

CRoad Agestes: Blodyne Bal4 Cinterstate 14 1 State 18 why sits -dr Boyate Rd. 1

Crossing evaluation*

Complete barrier

- Perched structure
- Structure water velocity > 3 fps
- Structure / stream water depth ratio < 0.1

Barrier for some species or flows

- Structure water depth (<0.2')
- Structure water velocity 2 3 fps
- Structure length (> 30') w/o substrate

<u>Temporary, high – flow barrier</u>

- Constriction ratio (<0.5)
- Scour pool present

Assessed during baseflow conditions

Perched culvert

Trout can jump ~ 2-3 x body length

High Water Velocity

Fish <u>sustained</u> swimming speeds

Fish Species	Size (inches)	Speed (ft/sec)
Brook Trout	4	1.0
Northern Pike	24	1.4
Brook Trout	8	1.5
B. Stickleback	2	1.5
White Sucker	8	1.6
Walleye	16	2.5
Redhorse	8	4.0
Sucker		
Brown Trout	8	5.0

Long structure Without substrate

Shallow Water

Overall Results:

8,659 roadway crossings in Driftless Area

Estimated number of barriers in Driftless Area

- 693 complete barriers
- 2,164 partial barriers
- 1,992 high-flow barriers
- 4,894 total No. barriers

Management Implications

- Set culverts at proper elevation,
- Expose or accommodate bed material,
- Accommodate bankfull stream flows

Summary:

- Connectivity is critical to stream function.
- Given large numbers of crossings and proportions that are barriers, fragmentation is a problem.
- Proper engineering of crossings can significantly reduce stream fragmentation.

