Quantifying the nitrogen budget

Irrigated potato and vegetable production in Central Wisconsin

Mack Naber

Dr. Matt Ruark

University of Wisconsin-Madison Department of Soil Science

March 9, 2013

Objective:

Scaling up improvements at small plots to field scale

Enviromentally Smart Nitrogen

Demo plots

Wrap up

Small plots

Intro

Image from smartnitrogen.com 2.21.2013

Intro Small plots Demo plots Wrap up Outline Intro Small plots Intro I

Setting the stage for adoption of slow release N
Extension: PCU works most of the time
Federal money is available
Growers say 'meh'

Small plots **Demo plots** Intro Wrap up Outline Setting the stage for adoption of slow release N **Small plot success NRCS** programs to aid adoption **Barriers to adoption**

Small plots

Wrap up

Outline

Setting the stage for adoption of slow release N

- Small plot success
- EQUIP: NRCS programs to aid adoption
- Barriers to adoption
- Year One demonstration pivots
 - Methods
 - Year one PCU field demonstration
 - Sweet corn
 - **Field corn**
 - Potato

Small plots

Demo plots

Wrap up

Outline

- Setting the stage for adoption of slow release N
 - Small plot success
 - EQUIP: NRCS programs to aid adoption
 - Barriers to adoption
- Year One demonstration pivots
 - Methods
 - Year one PCU field demonstration
 - Sweet corn
 - Field corn
 - Potato

ESN release curve 2012
Conclusion + improvements for year two

Small plots

Demo plots

Wrap up

Small plot evaluation

Potato

2009 -2010 – on farm

2010 – research station, two experiments

Sweet corn

2011 - 2012

Field Corn

2003-2005

Small plots

Demo plots

Wrap up

YIELDS

*All plots were fertigated to a total of 300 lb ac⁻¹ of N in 2009 and 500 lb ac⁻¹ of N in 2010.

Small plots

Demo plots

Wrap up

2010 YIELDS

Small plots

Demo plots

Wrap up

2011 YIELD

Small plots

Demo plots

Wrap up

2012 YIELD

Small plots

Demo plots

Wrap up

Small plot summary

- ESN applied at same rates as conventional results in similar yields
 - Except in sweet corn*
- ESN applied at reduced rate has similar yields as full rate conventional
 - Most of the time

Demo plots Small plots EQIP: Environmental Quality **Inceptives** Program

Intro

 For conservation practices that protect soil and water quality.

Wrap up

- Agricultural producers on agricultural land are eligible.
- Ag producers may be eligible for up to \$300,000 for the life of Farm Bill.

CSP: Conservation Stewardship Program

Small plots

Intro

- CSP offers participants two possible types of payments:
 - Annual payment for installing and adopting additional activities, and improving, maintaining, and managing existing activities

Demo plots

Wrap up

 Supplemental payment for the adoption of resourceconserving crop rotations

Demo plots

Wrap up

Barriers to adoption

- Yield concerns
- Practical management how is the practice used
- Issues with scaling up
 - Damaged pells
 - Weather
 - Producers make decisions in real time (they change thier mind)
 - Evaluation at scale

Demo plots

Wrap up

Methods

- Growers determined treatments
- Researchers
 - Collect cover biomass prior to burn down/ plow down
 - Soil sampled at planting
 - In-season tissue samples
 - Whole plant samples hand harvest
 - Soils samples immediately following harvest

Soil + plants samples will determine N-loss in season and

NUE

Demo plots

Wrap up

Methods

- Growers determined treatments
- Researchers
 - Collect cover biomass prior to burn down/ plow down
 - Soil sampled at planting
 - In-season tissue samples
 - Whole plant samples hand harvest
 - Soils samples immediately following harvest

- Soil + plants samples will determine N-loss in season and
- NUE

Intro		Small plots		Demo plot	ts	Wrap up	
Sweet cor	n applied	nitrogen	and yield				
Treatment	Preplant	Starter	Sidedress	Fertigation	Total N applied	Yield	
	(ESN)					mean S.E	
			Ibs N ac ⁻	1		tons ac ⁻¹	
ESN	88	14	95	0	198	8.2 0.	
CTI	0	14	96	70	180	88 0	

Intro		S	mall plots		Demo plots	W	rap up	
Russet E	Burbank	applied	nitrogen a	nd yield				
Treatment	starter	UAN	Urea+ESN I	Fertigatior	n AS	Total N applied	Yie	ld
							mean	S.E.
ESN	21	77	46+132	0	0	275	397	29
CTL	21	77	0	88	21	206	441	28

Grower used petiole nitrate content to guide N-applications to control

Intro	Small plots	Demo plots	Wrap up

Field corn applied nitrogen

Treatment	starter	sidedress	ESN Fertigation Total N applied		Yield		
						mean	S.E.
			lbs N ac	-1		Bu a	ac ⁻¹
ESN	21	120	110	0	251	242	13
CTL	21	113	0	64	198	296	22

NITROGEN RELEASE FROM ESN COATINGS

Demo plots

Wrap up

- We buried a known amount of ESN in a mesh bag.
- Eight bags per plot, four reps

Small plots

Intro

- •250 ESN (no extra N)
- Weighted the remaining ESN
- The weight of the polymer is known

Days after planting (DAP)

Intro

IntroSmall plotsDemo plotsWrap upConclusions• Use strong caution before drawing conclusions
from one year worth of data

ESN - no advantage on dry year: no leaching

Field trails can be improved
 Nitrogen contributed from irrigation water
 More fields sites using ESN

Small plots **Demo plots** Intro Wrap up Future questions: ESN specific questions 2012 release curve: abnormal or typical? Damaged pells or environmental? Use both ESN and conventional sources? Application **Preplant or Sidedress** Preplant and sidedress

Questions?

Intro	Small plots	Demo plots	Wrap up				
N Source & timing effects on corn grain							
yield at Hancock, WI, 2003-2005							
			Year*				
N source	N timing	2003	2004	2005			
		grain	grain yield, bu/acre				
Control		107	115	96			
PCU (ESN)	PP	204NS	167c	186ab			
	PP+4 wk	205	180b	189a			
Am. Sulf.	PP	196	132e	175b			
	PP+DCD	202	136e	183ab			
	4wk & 6 wk	194	181b	180ab			
* Yields shown are means of 150 and 200 lb N/acre rates.							