Using Fallout Radionuclides to Track Sediment Movement within an Agricultural Watershed

Jasmeet Lamba, K.G. Karthikeyan, and Anita M. Thompson

Biological Systems Engineering UNIVERSITY OF WISCONSIN-MADISON

Introduction

- Sediment: Important non point source pollutant
 - > Impacts
 - Off-site
 - Increased turbidity
 Reduced light penetration
 Particulate bound nutrients
 Aesthetics
 - On-site
 - Depletion of nutrient rich soils

Sediment Control

- Implementation of best management practices (BMPs)
 - In past four decades little or no improvement in NPS-Watershed projects (Meals et al., 2010)
 - No effect of conservation practices detectable across 133 agricultural watershed across the U.S (Sprague and Gronberg 2012)
- Possible reason
 - Changes in water quality lag behind the implementation of conservation practices
 - Conservation practices not working

Sediment Control

 Lag time between BMP implementation and measurable change in water quality

Better understand in-stream sediment processes

> Watershed models lack in-stream sediment transport data

• Sediment Fingerprinting techniques

Use of fallout radionuclides to understand in-stream sediment processes

Atmospheric Fallout Radionuclides

• Anthropogenic

➤ Cesium-137 (¹³⁷Cs)

- Half life = 30.2 years
- Natural
 - ➤ Lead-210 (²¹⁰Pb_{xs})
 - Half life = 22.3 years
 - ➢ Beryllium-7 (⁷Be)
 - Half life = 53.3 days

Objectives

• To determine in-stream sediment transport parameters

Sediment Age

Percent New Sediment

Sediment deposition/resuspension rates

• To determine relative contribution from different sources to in-stream suspended sediments

Project Site

- Pleasant Valley Watershed
- Dominant land uses are:
 - ➤ Cropland
 - Pasture
 - Forest
 - Grassland
- Area ~19 sq miles
- Average slope is 11%
- Silt loam soils

Methods

In-stream Sediment Transport Parameters

• Uplands

➤Croplands

➢ Pastures

Channel

Stream Banks

➤Stream Beds

Methods

In-stream Sediment Transport Parameters

- Stream bed deposition/resuspension rates were determined following method of Fitzgerald et al. (2001) and Walling and Quine (1990).
- Sediment age and percent new sediment were determined following method of Matisoff et al. (2005).
 - Sediment Age: Time elapsed after the sediment was tagged with the ⁷Be by the precipitation.
 - Percent New Sediment: Provides information on the relative dilution of the ⁷Be-rich sediments with the ⁷Be-dead sediments.

Methods Rainfall Event Sampling

• Rainfall Events:

Storm 1

0.5 inches of rainfall fell over period of 4 hour
 21st September, 2012

Storm 2

2.3 inches (0.42 inches+1.9 inches) of rainfall over 39 hour
 1.2th

➤13th and 14th October, 2012

Methods Soil Cores Sampling

- Soil cores frc collected bef
- All cores wer
- Rainfall sample sites within a
- Soil cores we reference sit

Results

Long-term Stream Bed Erosion Rates

Results

Relative Contribution to In-stream Suspended Sediments

- Storm 1
 - Channel sources contributed more than 90% to in-stream suspended sediments at all sites.
- Storm 2
 - At all sites except site 5, channel sources contributed 100% to in-stream suspended sediments
 - At site 5 croplands contributed 52% to in-stream suspended sediments

Conclusions

- Channel sources (stream bank and stream bed) are the dominant contributors to in-stream suspended sediments.
- Stream bed can act as depositional or erosional as a function of rainfall event.
- Stream beds are eroding on a long-term scale.
- Minor contributions from uplands during smaller rainfall event.

References

- Collins AL, Walling DE, Leeks GJL (1997): Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique. Catena 29, 1-27
- Fitzgerald SA, Klump JV, Swarzenski PW, Mackenzie RA, Richards KD (2001) Beryllium-7 as a tracer of short-term sediment deposition and resuspension in the Fox River, Wisconsin. Environ Sci Technol 35:300-305
- Matisoff G, Wilson CG, Whiting PJ (2005) The Be-7/PB210(xs) ratio as an indicator of suspended sediment age or fraction new sediment in suspension. Earth Surf Process and Landf 30:1191-1201
- Meals DW, Dressing SA, Davenport TE (2010) Lag Time in Water Quality Response to Best Management Practices: A Review All rights reserved. J. Environ. Qual. 39, 85-96
- Sprague LA, Gronberg JAM (2012) Relating Management Practices and Nutrient Export in Agricultural Watersheds of the United States. J. Environ. Qual. 41, 1939-1950
- Walling DE, Quine TA (1990) Calibration of caesium-137 measurements to provide quantitative erosion rate data. Land Degradation & Rehabilitation 2, 161-175

Thanks you!

Questions?